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stamps for d=2, curves 3 and 4 for d= 2.5 and the values of the remaining parameters are 

1 = 4, d, = 12.5,d, = 10. 
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ON THE NON-LINEAR BOUNDARY EQUATIONS OF THE MECHANICS 
OF THE CONTACT OF ROUGH ELASTIC BODIES* 

B.A. GALANOV 

As a generalization of the results of /l/, the existence and uniqueness 
of the solution of thecontactproblem of several rough elastic bodies (in 
the example of the contact of three bodies is proved). The method of non- 
linear boundary equations is used, which (like the variational method 
/2-5/l enables an effective investigation to be made of the correctness 
of the problem of body contact with unknown contact domains. 

1. Formulation of the problem. Let Ozyz be a Cartesian rectangular coordinate 
system, M&y) a point in the plane & = (z = 0) with the coordinates 5, yr mm{o} the 
Lebesgue measure of the set UC_&: Aa the biharmanic operator, supp~(~~ a carrier of the 
function v(M), Q an operator setting the function v(M), ME Q in correspondence with 
the function u+(M), Me 0 according to the rule u+ zz Qu = Sup {v(M), 0}, and L,,a = L,,(B) 
a Banch space of the vector-functions u(M)= (ur(M),vz(M)) (defined in the domain Q c Ez) 
with the norm 

11 Y (fw) II = (j (I ul (M) lr + I v2 (M) P&f)l’r t r > f 

For r=2 the space L,, is a Hilbert space with the scalar product 

(u, v) = j (Ul (M) VI (M) + % (.+f) v2 (W m&f 

The linear operator K acting from the Banach space E on the conjugate space E* to E is 
called strictly positive if (Kv,u)> 0, and the equality (Kv,v)= 0 is possible if and only 
if I)= 0 /6/ ((u,v) is the value of the linear continuous functional ~6% E* at the element 
v= E). 

We will consider the (frictionless) contact problem of an elastic body 1 and elastic half- 
space 3 with a plate 2 located between them (see the sketch, the y axis is perpendicular to 
the plane of the sketch). As a boundary value problem it reduces (with known assumptions) to 
the construction of the respective harmonic functions r&,(z,g,z)* %(cr,g,z) in the half-spaces 
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z<-t-6 and z > 0, (q (x, y, Z) = 0 (f?‘) for R - KI, R = (z' +- 1/' -i_ z")':', i = 1, 3) of the 
solution uz(z,Y) of the equation 

@us (5, Y) = J*z (Ulz' (z, Y, -4-6) - z& (s, Y, O)), M (s, Y)EQ 

and to the determination of the plane closed domains SIC Q, SsC n and the scalar quantity 
h from the conditions 

2 = 0, @a (Uaz’) f ZJ&Ua - u2 = --6, W' > 0 (M (X, Y) 622 

$2) 

@2 (us*') + 2xk¶%S - uz > - 6, Us,' =o (M(Gz,)E(Q\m 

%a' = 0 (M (% Y) E (f&\ Q)) 

ss 
u*'(z,y,-t-_)dxdy=P, "21r=$/r=o 

S, 

Here 8C & is a bounded domain with boundary I‘, n is the unit vector of the external 
normal t0 the contour r, Ui*‘ is the derivative of the function u* (i = 1,3) with respect to 

zJ @i (Pi)* -N<P~<N (i = 1,Z) are strictly increasing continuous functions and @( (0)= 0, 
hi > 0 (i = 1,2,3) are constants, t> 0 is the plate thickness, ?J> 0 is the gap between 
the plate 2 and the half-space 3, and h> 0 is a rigid displacement of the body 1 along the 
s axis caused by a force P> 0 acting on the body 1. The function f&Y)> 0 determines 
the gap between the plate the body 1 until their deformation (sketch), i.e., for h = 0 and 
P = 0. The orthogonal projections of the sets Sr and &,on the planes z = -t-6 and z = -6, 
respectively, are those parts of the plate surface that come into contact with the body 1 and 
half-space 3 after deformation. The functions PI = Qtf (pi) (i = 1,Z) describe the mechanical 
characteristics of the roughness of the bodies. Henceforth, Yr = P*(vi) denotes the inverse 
function for vi = @,i(pi), 

If the potentials 

are introduced (G(z,Y, %,n) is Green's function for the boundary value problem A2w (M) = 0, 
M~51; w 1~ = r3w/hz Ir = 0)and we use the notation 

H (M, N) = Us - %)2 + (Y - 11W'/* 

HP,= S H (M,~)pi(~} @NT Gp,= S G(~,~)Pi(~~"~ 

% % 

IpyS p,(N)dSN; M(s,y)EB, N(E,'l)Ek i=k2 

S, 

then problem (1.1) is eqhivalent to the problem of seeking the contact pressures ~r(jW),p,(M), 
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the sets S,,Sa and the quantity h from the system 

01 (PI) + (kH + &G)p, - kGp, = q; pl> 0 (ME S,) 

@I (PI) + (5H + hBG)p, - litGpn > Q; PI = 0 (ME (Q\&)) 

@a (~8) - J.zGpl + (ASH + hrG) pa = -4; p, > 0 (M E S,) 

‘& (Pa) - hoGp, + (W + bG) pa > -6; ps = 0 (ME (Q \ Ss)) 
zp1 = P 

We introduce the vectors and the symmetric second-order matrix 

g (M) = (q (M), --6), u (M) = (ur (M), VS (MN9 F (u (M)) = 
(F, (UI (M)), FB (UI (M))), Q (F (v Of))) = (0 VI (~1 W)Nx 

Q (Fa @a WN) 

(1.2) 

~IH (M, N) + x --x 
K(M, N)= 

&H (M, N) + x 

x =hG (M, N), xy: hi/h, h = h, + he + ha, i = I,, 2, 3 

We consider the system of non-linear equations 

v(M)+hSK(M,N)Q(F(u(N)))dSN=g(M) 

SQ(F~~;;J)W~=P; M,NE 8 
n 

in the unknown vector function u(M)and the scalar h, which we will write in operator form 
for convenience 

v + hKQFv = g, ZQFIVI = P (1.3) 

Theorem 1. If (s*, v2*,h) is a solution of system (1.3), 
S, = {M: vl* > 0}, Sz = {M: vs* > 0}, h) 

then ~P;~;~QFA*~ PI = QFzs*, 
is a solution of system (1.2), SUPP ~1 (M) c, St. 

i = 1,2. Conversely, if (p1,ps,S,,S41h) is a solution of system (1.2) and 

v* = g - hKQp (ME Q,NE S,) (1.4) 
then the triple (V r+,~,*,h) is a solution of system (1.3). The domains grand SI can be multi- 
connected. 

Proof. To reduce 

Let (~r*,q*~h) be the solution of system (1.3) and ME q. The relationships 

the writing, we use the notation 

01 = s, n s,; OB = s* n (52\ S,); ot = s, n (Q\S,); 

04 = 0 \ (A u S,) 

PI = QF,u,* > 0, PI = OF&’ > 0, 01 bd + (W + 
lid@ PI - Wpr = 4, U’r (pa) - &Gp, + (lilar + LG) pr = 
-&, zp, = P 

meaning that (PI, p~,S,,&,h) is +a solution of system (1.2) for ME ol, result from the definition 
of Q and (1.3). It can similarly be shown that (pl,~,S1,Sz,h) is a solution of system (1.2) 
for ME cot, i = 2, 3, 4. 

The inclusions supp pi(M)c St (i = 1,2) are obvious. This completes the proof of the direct 
part of the theorem. 

If (pr, p2,S1,S*,h) is a solution of system (1.2), then it can be seen (by alternately 
considerinq the case ME co,, i = 1,2,3,4) that (1.4) can be written thus: u* = g-kKQFu*, 
i.e. v+ = (v,+,uo+,h) is a solution of (1.3). 

Therefore, to solve the above contact problem (1.2) it is sufficient to find the solution 

(s*, a+, h) of system (1.3) since p1 = QFlv,*, PI = QFavz*. SI = {M: v,+ > 0}, Sr = {M: q* > 0). 
Consequently we will henceforth investigate system (1.3). 

2. Correctness of the problem. Let v" (M)=(v,“, (M), vso (M)) be a solution of the 
system of Hammerstein Eqs.cl.3) for h-/&o, and let. 

PO = s Q (Fl (VI’ (M))) ~SM 
P 

(2.1) 

We further assume that the functions F‘ (i = 1,X) satisfy the condition 

I Ff (v) I < C* I v I? c* = c-t, 0 < a < 1 
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Theorem 2. If r=l+ l/a, ‘/z < a < 1 and P E [O, PO], then system (1.3) has the unique 
solution {v* E L,,z; h E [O, bl). Here h = h (P) (0 < P < PO) is a continuous strictly increasing 
function, and if the functionf (M,)is continuous, then v* (M)E C(Q) (ho is an arbitrary number 
from the range [O,co). The quantity PO defined by (2.1) corresponds to this number. The 
quantity C(Q)is the space of vector functions whose coordinates are continuous functions on S2). 

Proof. The operator K is a completely continuous operator from L,,z (4 = 1 + a) in &* = 
&,a (r = 1 + I/a) /7/. The contraction K in La,z is a selfadjoint strictly positive operator. 
Consequently, there exists a square root D = ICI. of the operator K that is a completely 
continuous operator from Lz,* into Lq.2’ /6/. 
L 

The adjoint operator D* acts from Lp,l* into 
a.2. 

If the change of variable v = Dt + g /6/ is made inthe first equation of system (1.3), 
we obtain instead the equivalent equation 

Ut E t + kD*QF (Dt + g) = 0; t E La,z (2.2) 

with a continuous monotonic and potential operator U (the monotonicity of V follows from the 
monotonicity of the function QF,(vJ(i= 1,,2)). 

We find the lower bound of the scalar product (Ut,t): 

(Ut, t) = (t, t) + h (QF (Dt + g), Dt + g) - h (QF (Dt t g),. 
g)> (t, t) - h (QF (Dt + g), g) a (t, t).- hll gll~,,~ II QF (Dt -b dllLp,t 

Using the properties of the operators Q and F1 as well as the Minkowski inequality, we 
obtain 

II QF (m + g) IIL~,~ < C* (II D II II t II+_,a + II g lI~r,pY’~ 
We hence have the estimate 

(ut, t) > II t I&,, - c,h II g 114.2 II t IlgJll D II + II g Ilb,,a/ll t l141’a 

and a number p>O. exists for a>'la such that the inequality (ut,t)> 0 holds for Iltl(~,,> 
p , i.e., on the basis of the Browder-Minty theorem (/6/, p.2621, Eq.(2.2) has the solution 
f* E La,z for all h~[O,clo), to which the solution'v* =Dt* f g of the first equation of 
(1.3) corresponds. 

Hence, the existence of the function 

P(h) = 5 Q (FI (VI* (W))~~MM; h E Lo, 4 
n 

follows directly. 
We show the strict monotonicity and continuity of this function. 
Let the vector-functions v,,vs be solutions of the first equation of (1.3) corresponding 

to the values h=h, and h=hz. We introduce the notation 

e = up, - vl, d = QFVa - QFv,, Ah = (hg - b,O) 

We then obtain from (1.3) 

e + hKd = Ah 
(8, d) + h (W d) = (Ah, d) = (ha - hJ (P (ha) - P (hl)) 

,(2.3) 

where (e, d)> 0 (a consequence of the monotonicity of the operator QF). 
Using the assumption that the set {M: f(M)= O}#@, it can be proved (by reductio 

absurdum) that d#O for h,#ha. Hence, it follows from the strict positivity of K (in the 
sense of the definition given in the introduction) and from (2.3) that d = 0 just for h,= &. 
Consequently, for h,#h the left side of the second equation in (2.3) is positive. This 
implies the strict increase of. the function P(h). Furthermore, from the strict positivity of 
K and the second equation in (2.3) it follows that d-+0 as Ah- 0 andP (h) is a continuous 
function. Consequently, also the function h = h (P) (PE (0, POI) is a strictly increasing 
continuous function with the domain of values [O,hJ. 

The uniqueness of the solution of system (1.3) is an obvious consequence of equalities 
(2.3) and the fact that d=O only for Ah = 0. 

We will now show that v* E C(n) for gE C(a). We have 

v* + MQFv’ = g (2.4) 
An alternative is possible: 1) v* EL,,, is a discontinuous bounded vector-function; 

2) V* E L,a is an unbounded vector-function. For the first possibility, the left side of 
inequality (2.4) is a discontinuous bounded vector-function (since the operator hKQF converts 
every bounded vector function into a continuous vector-function), which contradicts the 
continuity of 9. If it is taken into account that the function H has a weak singularity while 
the function G is continuous, then the second possibility results in an analogous contradiction. 
Consequently v* is a continuous vector-function. 
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Other conditions for the existence of a solution of system (1.3) can be mentioned. For 
instance, for s~C(n)(O<a<i) and sufficiently small & the Schauder principle can be used, 
as is done in /l/. 

Different approximate methods /6, 8/ can be used to solve system (1.3). It should be 
taken into account here that the operator Q is Fr&het-differentiable only in certain sets 

OCL,. For instance, (as an operator acting from C(Q)cL,(Q) into &(Q), it is differentiable 
in the set 

0 = {v: “E c (Q), mes(M:v (M) = 0) = 0) 
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INVERSE CONTACT PROBLEMS OF THE THEORY OF PLASTICITY* 

V.I. KUZ'MENKO 

A class of inverse contact problems of the theory of plasticity dealing 
with the determination of the form of a stamp ensuring the prescribed 
final change in the body shape is studied. The problem is given in the 
form of a functional equation. The principle of compressive mapping is 
used to show the existence and uniqueness of the solution, and an 
iterative process is given for determining the required form of the stamp. 
A problem dealing with the form of the stamp ensuring the formation of 
trapezoidal indentations in the strip surface is solved as an example. 

1. Formulation of the problem. We shall connect a monotonically increasing parameter 
t, t E lo, Tl, with the process of quasistatic deformation of an elastoplastic body 8, and we 
shall call it time. We use, as the spatia-1 frame of reference, the Cartesian coordinate 
system 0~~q.z~. The symbols u1 (~,t),e~~(5,t),uil(t,t) denote the components of the vector of small 
displacements and of the small deformations and stress tensors at the point z = (rr,~~,rg), at 
the instant t. 

The body 56 is bounded by a piecewise smooth surface composed of three parts: up,, po, pc. 
The body is clamped over the surface p,, and the part p, is stress-free. The surface r, 
is acted upon by the moving stamp. We describethe form of the stamp surface by the function 

f (4 equal to the distance from the surface p, to the stamp surface along the normal to r,, 
at t=O. The law of motionofthe stamp as a rigid body is assumed given, does not depend on 
the form of the stamp, and must be chosen so that when t<t*, an elastoplastic deformation 
takes place in the body Q, while at t> t* we only have unloading or active elastic 
deformation. We assume that there is no contact whatsoever between the body and the stamp at 
t = T. 
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